Math 42-Number Theory Problem of the Day #3 Due Tuesday, February 8, 2011

We'll write U_m to mean the elements of \mathbb{Z}_m that have a multiplicative inverse. So for example, $U_4 = \{1, 3\}$ since in \mathbb{Z}_4 , 1 and 3 are invertible $(1 \cdot 1 = 1 \text{ and } 3 \cdot 3 = 9 = 1)$, but 0 and 2 are not invertible.

- 1. List the elements of U_7 , U_8 , U_9 , and U_{11} . When you add two elements of U_m do you necessarily get another element of U_m ? When you multiply two elements of U_m do you necessarily get another element of U_m ? If $a \in U_m$, is -a in U_m ?
- 2. Imagine a world with only even integers. We'll call the set of even integers \mathbb{E} , so in other words $\mathbb{E} = \{\ldots -6, -4, -2, 0, 2, 4, 6, \ldots\}$. In this world, what it means for a number to be prime is that it can't be factored into elements of \mathbb{E} . For example, even though 6 is not prime in \mathbb{Z} , it is prime in \mathbb{E} (because 6 can't be factored into a product of even numbers). Find a number in \mathbb{E} that can be factored into \mathbb{E} -primes in (at least) two different ways.